3 research outputs found

    Identification of candidate Glutathione S-transferase (GST) genes in Sunn pest, Eurygaster integriceps Put. (Hem.: Scutelleridae), using RNA-seq analysis

    Get PDF
    Glutathione S-transferase (GST) genes control vital traits for metabolism of the variety of toxins that expose insects to the environment (insecticide) or plant defense systems. Sunn pest is the most important pest of wheat and barley in the Middle East where it threats food security throughout the region. Sequencing the sunn pest's RNA provides an opportunity to identify the structure and function of the different gene families. To our knowledge, this is the first study to identify 43 GST candidate genes in sunn pest using bioinformatics tools. The identified candidate genes clustered in 5 cytosolic GST (Delta, Theta, Zeta, Omega, and Sigma) and Microsomal GST using phylogenetic analysis. The Sigma subclass was identified as the biggest subclass with 22 candidate genes, while microsomal GSTΒ  found to be the smallest group with one candidate gene. Given the role of GST in the interactions among the insect, toxins, and environment, our results facilitate future investigations on insecticide resistance and their utilization in pest management programs against sunn pest

    Investigation of bio-air contamination in some hospitals of Kermanshah, Iran

    No full text
    Background: Microorganism transmission is an important route for the outbreak of microbial pathogens in outdoor and indoor environments. Objectives: In this study, we performed air sampling and analysis of various bio-aerosol particles (bacteria and fungi) by a passive method in order to measure the level of contaminant particles. Materials and Methods: Air sampling was done in five hospitals in Iran, which included Imam Ali Hospital (IAH), Taleghani Hospital (TH), Imam Khomeini Hospital (IKH), Farabi Hospital (FH) and Imam Reza Hospital (IRH). In each hospital, units such as surgery, intensive care unit, angiography, emergency, oncology, nursing station, pathology laboratory, microbiological laboratory, operating room, isolation room (infectious section), delivery room and outdoor environment were investigated. Results: The total counts for viable bacteria and fungi in the sampled air from the hospitals were as follows: IAH (bacteria 0–>100 colony-forming unit [CFU]/m3;fungi 0–14 CFU/m3), FH (bacteria 1–18 CFU/m3; fungi 0–7 CFU/m3), IRH (bacteria 0–14 CFU/m3; fungi 4–>100 CFU/m3), TH (bacteria 4–>250 CFU/m3; fungi 0–43 CFU/m3) and IKH (bacteria 11–1766 CFU/m3; fungi 0–25 CFU/m3). Conclusions: Results showed that microbial counts following the air sampling are strongly dependent on the environment. However, a low number of air microorganisms do not mean a clean and healthy environment
    corecore